COURSE TITLE : ELECTRONIC CIRCUITS LAB

COURSE CODE : 3047
COURSE CATEGORY : B
PERIODS/WEEK : 5
PERIODS/SEMESTER : 75/3
CREDITS : 3

LIST OF EXPERIMENTS

On completion of the course the student will be able :

- 1.0 To construct and test various electronics circuits using discrete components.
- 1.1 To design and construct (i) RC differentiator circuit (ii) RC integrator circuit and study its pulse response (for 3 sets of RC values.)
- 1.2 To setup a transistor as switch and observe its performance.
- 1.3 To setup a single stage RC coupled CE amplifier with potential divider bias and
 - (i) observe the phase difference between input and output wave forms.
 - (ii) measure mid band gain.
 - (iii) plot its frequency response and determine the band width.
- 1.4 To construct an emitter follower circuit and
 - (i) measure the gain.
 - (ii) plot its input / output waveforms.
- 1.5 To construct a single stage tuned amplifier circuit and
 - (i) plot its frequency response.
 - (ii) measure its peak gain and bandwidth.
- 1.6 To setup a RC phase shift oscillator and
 - (i) plot the output waveform.
 - (ii) measure the frequency of oscillation.
- 1.7 To construct a Wien bridge oscillator and
 - (i) plot the output waveform.
 - (ii) measure the frequency of oscillation.
- 1.8 To setup a Hartley oscillator and
 - (i) plot the output waveform.
 - (ii) measure the frequency of oscillation.

1.9	To setup a Colpitts oscillator and
	(i) plot the output waveform.(ii) measure the frequency of oscillation.
1.10	To construct a transistor astable multivibrator circuit and
	(i) plot the collector and base waveforms.(ii) measure the frequency of oscillation.
1.11	To setup a transistor monostable multivibrator circuit
	(i) plot the collector and base waveforms.(ii) measure the time delay.
1.12	To setup a Schmitt trigger circuit using BJT and
	(i) plot the input output waveforms.(ii) measure the UTP and LTP voltages.
1.13	To setup a UJT relaxation oscillator and plot the waveforms at emitter, base1 and base2
1.14	To construct a two stage RC coupled Amplifier
	(i) plot the frequency response curve.(ii) measure the mid band gain.(iii) find the 3dB bandwidth.
1.15	To setup a two stage direct coupled amplifier
	(i) plot the frequency response curve.(ii) find the gain and bandwidth.