COURSE TITLE : DIGITAL COMPUTER PRINCIPLES

COURSE CODE : 3133

COURSE CATEGORY : B

PERIODS/WEEK : 4

PERIODS/SEMESTER : 60

CREDITS : 4

TIME SCHEDULE

MODULE	TOPICS	PERIODS
1	Digital Systems & Logic Gates	15
2	Combinational Logic	15
3	Sequential Logic	15
4	A/D, D/A, Memory and Programmable Logic	15

Course General Outcomes:

SI.	G.O	On completion of this course the student will be able :
1	1	To understand Digital Systems and Data Representation
_	2	To know Logic Gates and Boolean Algebra
2	1	To understand Gate Level Minimization
	2	To understand Combinational Logic
3	1	To understand Synchronous Sequential Logic
	2	To understand registers and Counters
4	1	To understand Analog to Digital and Digital to analog Convertor
	2	To understand Memory and Programmable Logic

Specific Outcomes:

MODULE –I Digital Systems & Logic Gates

1.1 To understand Digital Systems and Data Representation in Digital Computers

- 1.1.1 To state Digital Systems
- 1.1.2 To explain various Number Systems
- 1.1.3 To describe Binary Codes

1.2 To know Logic Gates and Boolean Algebra

- 1.2.1 To Describe Logic gates
- 1.2.2 To explain Boolean Algebra
- 1.2.3 To solve using Theorems and Properties of Boolean Algebra

MODULE – II Combinational Logic

2.1 To understand Gate Level Minimization

- 2.1.1 To Describe Map Method
- 2.1.2 To describe SOP and POS minimisation
- 2.1.3 To design and solve using Map method

2.2 To understand Combinational Logic

2.2.1 To explain different Combinational Circuits

MODULE – III Sequential Logic

3.1 To understand Synchronous Sequential Logic

- 3.1.1 To describe Sequential Circuits
- 3.1.2 To explain Storage elements Latches & Flip-Flops

3.2 To understand registers and Counters

- 3.2.1 To explain different Registers
- 3.2.2 To explain Different counters

MODULE -IV A/D, D/A, Memory and Programmable Logic

4.1 To understand A/D and D/A converter

- 4.1.1 Discuss the different DAC specifications like resolution, accuracy, settling time monotonocity, line errors.
- 4.1.2 Study basic concept of DAC
- 4.1.3 Study basic concept of ADC.

4.2 To understand Memory and Programmable Logic

- 4.2.1 To describe Memory systems
- 4.2.2 To explain the decoding technique
- 4.2.3 To explain the different techniques in error detection and correction of data
- 4.2.4 To explain PAL and PLA

CONTENT DETAILS

MODULE -I Digital Systems & Logic Gat

Digital Systems – Binary numbers – Number base conversions- Octal, Hexadecimal - Complements of Numbers – Signed Binary Numbers - Binary Codes

Boolean Algebra – Introduction- Basic definitions – Axiomatic Definition of Boolean Algebra -Basic Theorems and Properties of Boolean Algebra – Boolean Functions- Canonical and standard forms — Digital Logic Gates –

MODULE – II Combinational Logic

The Map Method – Four Variable K-Map – Product –of-Sums & Sum-of-Products Simplification – Don't Care Conditions – NAND and NOR Implementation – Two-level implementation – Exclusive –OR Function Combinational Circuits – Binary Adder – Subtract or- Decimal Adder – Binary Multiplier – Magnitude Comparators-Decoder – Encoder-Multiplexer

MODULE – III Sequential Logic

Sequential Circuits – Storage elements – Latches & Flip-Flops

Registers – Shift register – Ripple Counters- Synchronous Counters-Ring counters - Johnson Counter

MODULE –IV A/D, D/A, Memory and Programmable Logic

DAC specifications like resolution, accuracy, settling time monotonocity, line errors. - DAC — ADC Random Access Memory - Memory decoding - Error detection and correction - Read Only Memory-Programmable Logic Array - Programmable Array Logic

Text Book(s):

- 1. Digital Design, M. Morris Mano & Michael D. Ciltti, Pearson Education, 5th Edition
- 2. Digital fundamentals Thomas Floyd &R.P. Jain, Pearson Education (2005)

References:

- 1. Digital Principles and Applications by Malvino & Leach , McGraw-Hill,
- 2. Fundamentals of digital circuits A. Anand Kumar, PHI Learning Pvt. Ltd., 2003
- 3. Digital computer fundamentals Thomas. C. Bartee, McGraw-Hill , 1985