OPERATING SYSTEMS

COURSE TITLE : COURSE CODE : 4134 COURSE CATEGORY : PERIODS/WEEK 4 PERIODS/SEMESTER : 60 **CREDITS** 4

TIME SCHEDULE

MODULE	TOPICS	PERIODS
1	Introduction to Operating System	15
2	Process Management	15
3	Memory Management	15
4	File Systems and I/O Systems	15

Course General Outcomes:

SI.	G.O	On completion of this course the student will be able :
1	1	To understand The concept of System Software
	2	To Understand Operating System
2	1	To understand process and threads
2	2	To understand CPU scheduling
3	1	Understand memory management
	2	Understand virtual memory
4	1	Understand the file system
	2	Understand I/O systems

Specific Outcomes:

Module I - INTRODUCTION TO OPERATING SYSTEM.

- 1.1 To understand the Concept of System Software
 - 1.1.1 State system software.
 - 1.1.2 Discuss assembler and its functions
 - 1.1.3 Discuss loader and its functions
 - 1.1.4 Discuss compilers and interpreters and their functions
 - 1.1.5 Discuss operating system and its functions
- 1.2 To Understand operating systems
 - 1.2.1 Discuss different features of operating systems
 - 1.2.2 List the functions of Operating Systems
 - 1.2.3 Discuss batch systems
 - 1.2.4 Discuss multiprogramming systems
 - 1.2.5 Discuss time sharing
 - 1.2.6 Describe multiprocessor systems
 - 1.2.7 Describe real time systems
 - 1.2.8 Discuss Unix, Windows, and Linux operating systems

MODULE II: PROCESS MANAGEMENT

- 2.1 To Understand processes and threads
 - 2.1.1 Define process
 - 2.1.2 Desribe process control block (PCB) and its general structure.
 - 2.1.3 Explain the different states of a process with the help of state diagram.
 - 2.1.4 Define a thread
 - 2.1.5 Compare between threads and processes
 - 2.1.6 Explain multi-threading.
- 2.2 To Understand CPU scheduling
 - 2.2.1 Discuss about various schedulers long, medium and short term.
 - 2.2.2 Explain context switching
 - 2.2.3 Describe CPU and I/O burst cycles
 - 2.2.4 Explain CPU bound and I/O bound processes
 - 2.2.5 Discuss the difference between preemptive and non-preemptive scheduling
 - 2.2.6 Discuss various scheduling criteria
 - 2.2.7 Explain FCFS, SJF, Priority, and RR scheduling algorithms and their Gantt charts
 - 2.2.8 Discuss Multilevel queue and Multilevel feedback queue scheduling
- 2.3 To Understand Process synchronization
 - 2.3.1 Discuss co-operating processes
 - 2.3.2 Explain race condition
 - 2.3.3 Explain critical section of processes
 - 2.3.4 Define Critical Section Problem and its solutions
 - 2.3.5 Explain resource allocation graphs
 - 2.3.6 Explain deadlock and its causes
 - 2.3.7 Discuss deadlock avoidance, prevention and detection & recovery.

MODULE III: MEMORY MANAGEMENT

- 3.1 To Understand memory management
 - 3.1.1 Discuss different address bindings compile, link and run time bindings
 - 3.1.2 Differentiate the logical address and physical address.
 - 3.1.3 Explain contiguous memory allocation fixed partition and variable partition
 - 3.1.4 Explain first fit, best fit and worst fit allocation strategies
 - 3.1.5 Define fragmentation internal and external, and suggest solutions
 - 3.1.6 Explain paging and paging hardware
 - 3.1.7 Discuss segmentation, and the advantages of segmentation over paging
- 3.2 Understand virtual memory
 - 3.2.1 Discuss the concept of virtual memory
 - 3.2.2 Explain demand paging
 - 3.2.3 Explain page-faults and how to handle page faults.
 - 3.2.4 Discuss page replacement algorithms: FIFO, optimal, LRU,
 - 3.2.5 Explain the concept of thrashing

MODULE IV: FILE SYSTEMS AND I/O SYSTEMS

- 4.1 Understand the file system
 - 4.1.1 Discuss the concept of file and directory
 - 4.1.2 Discuss the various file operations
 - 4.1.3 Describe the file organization concepts sequential and indexed
 - 4.1.4 Explain about different directory structures single level, two-level, and tree structured directories
 - 4.1.5 Explain about different allocation methods contiguous, linked and indexed allocations
- 4.2 Understand Virtualization
 - 4.2.1 Discuss the concept of virtualization
 - 4.2.2 Discuss different types of virtualization
 - 4.2.3 Discuss the overview of Vmware
 - 4.2.4 Explain virtual Box
 - 4.2.5 Explain about thin client

CONTENT DETAILS

MODULE I

Introduction to systems software — assembler, loader, compilers, interpreters and their functions. Operating system — definition - goals of OS - different types of Operating Systems - batch systems - multiprogramming systems - time sharing - multiprocessor systems - real time systems. Comparison of DOS, Unix, Windows, and Linux operating systems - Operating System components

MODULE II

Define process - process control block (PCB) and its general structure - different states of a process with the help of state diagram. - Define a thread – Comparison between threads and processes. - Multithreading.

Schedulers – long, medium and short term- queuing diagrams. - context switching. CPU and I/O burst cycles - CPU bound and I/O bound processes- difference between preemptive and non-preemptive scheduling- Various scheduling criteria - FCFS, SJF, Priority, and RR scheduling algorithms and their Gantt charts - Multilevel queue and Multilevel feedback queue scheduling

Process synchronization - Co-operating processes - Race condition - Critical section of processes - Critical Section Problem and its solutions- Resource allocation graphs - Deadlock and its causes — Deadlock avoidance, prevention and detection & recovery.

MODULE III

Memory management - Different address bindings - compile, link and run time bindings. - Difference between logical address and physical address - Contiguous memory allocation - fixed partition and variable partition - Allocation Strategies - first fit, best fit and worst fit - Define fragmentation - internal and external, and suggest solutions - Paging and paging hardware - Segmentation, and the advantages of segmentation over paging

Concept of virtual memory - Demand paging - Page-faults and how to handle page faults. - Page replacement algorithms: FIFO, optimal, LRU, LRU Approximation, Counting based (LFU and MFU) - Learn the concept of thrashing

MODULE IV

File system - Concept of file and directory - Various file operations - File organization concepts - sequential and indexed. Different directory structures - single level, two-level, and tree structured directories. - Different allocation methods - contiguous, linked and indexed allocations.

Virtualization: Need of virtualization – cost , administration , fast deployment , reduce infrastructure cost – limitations.. Types of hardware virtualization: Full virtualization - partial virtualization - para virtualization. Desktop virtualization: Software virtualization – Memory virtualization - Storage virtualization – Data virtualization – Network virtualization..Vmware features and infrastructure – Virtual Box - Thin client

Text Book(s)

- 1. Operating System Concepts Abraham Silberschatz, Peter Gaer Galvin and Greg Gagne. Wiley Publicaions-Eighth Edition
- 2. Cloud computing a practical approach Anthony T.Velte , Toby J. Velte Robert Elsenpeter TATA McGraw- Hill , 2010

References

- 1. Operating Systems-Internals and Design Principles William Stallings . PEARSON Publicaions- **Seventh Edition**
- 2. Operating Systems Rohit Khurana, Vikas Publishing-Second Edition Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online - Michael Miller - Que 2008