COURSE TITLE : ADVANCED MICROPROCESSORS

COURSE CODE : 6041
COURSE CATEGORY : A
PERIODS/WEEK : 5
PERIODS/SEMESTER : 75/6
CREDITS : 5

TIME SCHEDULE

MODULE	TOPICS	PERIODS
1	Architecture of Intel 8086.	19
2	Programming of 8086 & Interrupt Processing.	19
3	Intel 80386 and Pentium.	19
4	Introduction to Multicore Processors.	18
	Total	75

Course General Outcome:

Module	GO	On completion of the study of this course the students will be able :
1	1	To understand the architecture of Intel 8086.
2	2	To understand interrupt processing in 8086.
	3	To understand programming of 8086.
3	4	To understand the architecture of 80386.
	5	To understand the architecture of Pentium.
4	6	To understand hyper threading technology and multicore processors.

GO - General Outcome

On the completion of the study the student will be able :

MODULE I ARCHITECTURE OF INTEL 8086

1.1.0 To understand the Architecture of Intel 8086.

- 1.1.1 To list the main features of Intel 8086.
- 1.1.2 To explain the internal architecture of Intel 8086.

- 1.1.3 To explain memory segmentation in 8086.
- 1.1.4 To explain physical address generation in 8086.
- 1.1.5 To describe the register set of 8086.
- 1.1.6 To illustrate the Flag register in 8086.
- 1.1.7 To describe the pin functions of 8086.
- 1.1.8 To explain the minimum mode and maximum mode configurations of 8086.

MODULE II PROGRAMMING OF 8086 AND INTERRUPT PROCESSING

2.1.0 To understand Interrupt Processing in 8086.

- 2.1.1 To state the sources of interrupts in 8086.
- 2.1.2 To explain interrupt response in 8086.
- 2.1.3 To illustrate interrupt vector table.
- 2.1.4 To explain the types of interrupts in 8086.

2.2.0 To understand Programming of 8086

- 2.2.1 To define addressing mode.
- 2.2.2 To explain the data addressing modes of 8086.
- 2.2.3 To classify 8086 instructions.
- 2.2.4 To describe the instructions of 8086.
- 2.2.5 To define assembler.
- 2.2.6 To define assembler directives.
- 2.2.7 To describe the commonly used assembler directives.
- 2.2.8 To write simple assembly language programs using assembler directives.

MODULE III INTEL 80386 AND PENTIUM

3.1.0 To understand the Architecture of 80386.

- 3.1.1 To list the key features of Intel 80386.
- 3.1.2 To explain the internal architecture of 80386.

- 3.1.3 To explain the operating modes of 80386.
- 3.1.4 To describe paging mechanism in 80386.
- 3.1.5 To explain address translation in PVAM (non paged and paged modes).

3.2.0 To understand the Architecture of Pentium.

- 3.2.1 To list the main features of Pentium processor.
- 3.2.2 To explain the internal architecture of Pentium processor.
- 3.2.3 To list the operating modes of Pentium processor.
- 3.2.4 To list the main features of Pentium-Pro processor.

MODULE IV INTRODUCTION TO MULTICORE PROCESSORS

4.1.0 To understand hyper threading technology and multicore processors.

- 4.1.1 To describe the concept of hyper threading technology.
- 4.1.2 To define core.
- 4.1.3 To identify the limitations of single core processor.
- 4.1.4 To state the concept of multi core processing.
- 4.1.5 To distinguish between homogeneous and heterogeneous multicore processors.
- 4.1.6 To differentiate single core and multicore processors with general block diagrams.
- 4.1.7 To list the advantages of multicore technology.
- 4.1.8 To state the major issues in multicore processing.
- 4.1.9 To explain the internal architecture of Intel Core2 Duo.
- 4.1.10 To list the important technological features of IA processors.
- 4.1.11 To differentiate between Core i3, i5 and i7 processors.

COURSE CONTENTS

MODULE I Architecture of 8086

Features of Intel 8086 - Internal architecture of Intel 8086 - Memory segmentation - Physical address generation - Register set of 8086 - Flag register - Pin functions - Minimum mode and maximum mode configurations.

MODULE II Programming of 8086 and interrupt processing

Sources of interrupts in 8086 - interrupt response - interrupt vector table - types of interrupts - addressing mode - data addressing modes of 8086 - classification of 8086 instructions - instructions of 8086 (description only) - assembler - assembler directives - commonly used assembler directives (ASM 86) - simple assembly language programs.

MODULE III Intel 80386 and Pentium

Key features of Intel 80386 - internal architecture of 80386 - operating modes - paging mechanism - address translation in PVAM (non paged and paged modes) - features of Pentium processor - internal architecture of Pentium processor - list of operating modes - features of Pentium-Pro processor.

MODULE IV Introduction to multicore processors

Hyper threading technology - define core - limitations of single core processor - concept of multi core processing - advantages - homogeneous and heterogeneous multicore processors - single core and multicore processors comparison - major issues in multicore processing - internal architecture of Intel Core2 Duo (Simple block diagram only) - important technological features of IA processors - comparison of Core i3, i5 and i7 processors.

Text Books

- 1. Microprocessors and Interfacing Douglas V Hall TMH.
- 2. The x86 Microprocessors Second Edition Lyla B Das Pearson.
- 3. Microcomputer Systems: The 8086/8088 Family Yu Cheng Liu and Glen A Gibson PHI.
- 4. Microprocessor 8086 Programming & Interfacing A Nagoor Kani RBA Publications.