Program: Diploma in Electronics Engineering / Electronics and Communication Engineering		
Course Code: 5049A	Course Title: Microwave Engineering Lab	
Semester: 5	Credits: 1.5	
Course Category: Program Elective		
Periods per week: 3 (L:0, T:0, P:3)	Periods per semester: 45	

Course Objectives:

- To familiarize with working of microwave devices
- To study the working of microwave generators and antennas
- To give an outline on antenna designing software

Course Prerequisites:

Topic	Course code	Course name	Semester
Microwave Devices		Microwave Devices and Radar	5

Course Outcomes:

On completion of the course, the student will be able to:

COn	Description	Duration (Hours)	Cognitive Level
CO1	Apply the concepts of the wave guide parameters	9	Applying
CO2	Experiment with microwave coupling devices	9	Applying
CO3	Demonstrate the operation of Microwave generators and radiators	9	Applying
CO4	Design antenna with high frequency simulation software	12	Applying
	Lab Exam	6	

CO – PO Mapping:

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3		3			
CO2	3			3			
CO3	3			3			
CO4	3	3	3	2			3

³⁻Strongly mapped, 2-Moderately mapped, 1-Weakly mapped

Course Outline:

Module Outcomes	Description	Duration (Hours)	Cognitive Level		
CO1	Apply the concepts of the wave guide parameters				
M1.01	Familiarize microwave components and instruments.		Applying		
M1.02	Measure the frequency and wave length of a microwave signal.	3	Applying		
M1.03	Determination of VSWR of a given load.	3	Applying		
CO2	Experiment with microwave coupling devices				
M2.01	To measure the isolation between E and H arms of magic tee and demonstrate power division in magic tee. Applying		Applying		
M2.03	To demonstrate the isolation of E and H plane tee and its power division. 1.5 Applying		Applying		
M2.04	To measure the coupling factor, insertion loss and directivity of directional coupler 3 Applying		Applying		
M2.05	To measure VSWR, insertion loss and isolation of a circulator. 3 Applying		Applying		
	Lab Exam – I	3			
CO3	Demonstrate the operation of Microwave gene	erators and	radiators		
M3.01	Plot the V-I characteristics of Gunn diode. 3 Applying		Applying		
M3.02	Plot the characteristics of reflex klystron tube. 3 Applying		Applying		
M3.03	Measure the gain of Horn antenna. 3		Applying		

CO4	Design antenna with high frequency simulation software		
M4.01	Familiarize high Frequency Simulation Software(FSS)	3	Understanding
M4.02	Using FSS design a monopole antenna 3 Applying		Applying
M4.03	Using FSS design a dipole antenna 3 Applying		Applying
M4.04	Open Ended experiments** 3 Applying		Applying
	Lab Exam – II	3	

** - Suggested Open Ended Projects

(Not for End Semester Examination but compulsory to be included in Continuous Internal Evaluation. Students can do open ended experiments as a group of 4-5. There is no duplication in experiments between groups. Open ended experiments should include the concepts of circuit design and application)

- 1) Application of high frequency simulation software
 - o Radiation pattern of microstrip antenna
 - o VSWR measurements
 - o Gain and Directivity measurements
 - Polarization plots

Text / Reference:

T/R	Book Title/Author	
T1	Balanis_Advanced Engineering Electromagnetics, John Wiley & Sons, 2012	
T2	Samuel Y.Liao "Microwave Devices and circuits" - Pearson	
R2	G.S.N.Raju "Microwave Engineering" -I K International	

Online Resources:

Sl.No	Website Link
1	https://www.ansys.com/en-in/academic/students/ansys-electronics-desktop-student
2	https://vlab.amrita.edu/?sub=3&brch=179∼=400&cnt=407
3	http://eem-iitd.vlabs.ac.in/exp7.html